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1. IN~~DUCTION 

During the last 20 years, there has been a great deal of research concern- 
ing designs with A= 1 admitting 2-transitive groups. The following 
theorems will be proved in this note; they are fairly simple consequences of 
the classification ’ of all finite simple groups (see, e.g., [6]). 

THEOREM 1. Let 9 be a design with ,! = 1 admitting an automorphism 
group 2-transitive on points. Then 9 is one of the following designs: 

(i) PG(d qh 

(ii) AG(d, q), 
(iii) The design with u=q3 + 1 and k=q+ 1 associated with 

PSU(3, q) or *G,(q), 
(iv) One of two affine planes, having 34 or 36 points [S, p. 2361, or 

(v) One of two designs having u = 36 and k = 3’ [12]. 

THEOREM 2. Let Y be a finite geometric lattice of rank at least 3 such 
that Aut 6p is transitive on ordered bases. Then either 

(i) Y is a truncation of a Boolean lattice or a projective or affine 
geometry, 

(ii) 9 is the lattice associated with a Steiner system S(3, 6, 22), 
S(4, 7, 23), or S(5, 8, 24), or 

(iii) 6p is the lattice associated with the 65-point design for PSU(3, 4). 

The groups in Theorems 1 and 2 are described in the course of the proof. 
It would, of course, be desirable to have more elementary proofs of both 

* This research was supported in part by NSF Grant MCS 790313042. 

’ At the time of writing (December 1982), this classification is not quite complete: the 
uniqueness of the Monster has not been proved. However, this does not cause any dilliculties 
with our use of the classification. 
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theorems. Unfortunately, even the determination of all 2-transitive 
collineation groups of AG(d, q) seems to require the classification of all 
finite simple groups. (The case PG(d, q) is much simpler [2].) 

The above theorems were proved more than three years ago, on the 
assumption that the aforementioned classification would be completed. 
Since then, special cases have appeared: Buekenhout [l, Sect. 41, Key and 
Shult 1141, Hall [7], and Cherlin, Harrington, and Lachlan [3]. None of 
these is used in our proof; each also assumes the aforementioned 
classification. I am grateful to F. Buekenhout and P. Seymour for urging 
that I write up the proofs of Theorems 1 and 2. 

2. PRELIMINARIES 

Let G be a 2-transitive group of permutations of a set X of size u. If 
YE X let G, be its set stabilizer, G(Y) its pointwise stabilizer, and set 
G;= G,/G( Y). 

If SE G let F(S) be the set of fixed points of S. 
All other notation is very standard. 
The classification of all finite 2-transitive groups is a consequence of the 

classification of all finite simple groups: see [4, 9-11, 13, 151. (Note, 
however, that not all sporadic simple groups were dealt with in those 
references. These are not difficult to eliminate by using properties of the 
individual groups [6] and imitating those references, especially [lo, 111.) 
The list of groups is as follows. 

(A) G has a simple normal subgroup N, and N d G < Aut N, where N 
and v are as follows: 

(1) A,, vz5. 

(2) PSL(d, q), d>2, v= (qd- l)/(q- 1) (two representations if 
d> 2); here, (4 q) # (2,2), (2,3). 

(3) PSU(3,q),v=q3+1,q>2. 

(4) sz(q),u=q*+l,q=2*‘+‘>2. 

(5) *G2(q)‘, v=q3+ 1, q=3*‘+! 

(6) Sp(2n,2),n>3,~=2*“-‘f2”-‘. 

(7) PSL( 2, 1 1 ), u = 11 (two representations). 

(8) Mathieu groups M,, v = 11, 12, 22,23, 24 (two representations 
for J412). 

(9) M1,, v = 12. 
(10) AT, v = 15 (two representations). 

(11) HS (Higman-Sims group), u = 176 (two representations). 

(12) .3 (Conway’s smallest group), v = 276. 
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(B) G has a regular normal subgroup N which is elementary abelian of 
order v = pd, where p is a prime. Identify G with a group of affine transfor- 
mations x + xg+ c of GF(P)~, where ge GO. Then one of the following 
occurs: 

(1) G<ATL(l, v). 

(2) G,r>SL(n, q), q” = pd. 

(3) G,ESp(n, q), q” = pd. 

(4) G,r>G,(q)‘, q6 = p”, q even, 

(5) G,z A, or A,, v = 24. 

(6) G,,pSL(2,3) or X(2, 5), v=p2,p=5, 7, 11, 19, 23, 29, or 59 
or v = 34. 

(7) GO has a normal extraspecial subgroup E of order 2’, and GO/E 
is isomorphic to a subgroup of S5, where v = 34. 

(8) G,=SL(2, 13), ~=3~. 

The remark “two representations” refers to the fact that there are two 
different 2-transitive permutation representations of degree v, and these are 
interchanged by an outer automorphism of G. 

Almost all of the examples on the above lists are familiar in various con- 
texts. We will need only a few properties of each one, especially the orbit- 
lengths of the stabilizer G,, of two different points x and y. In almost every 
case, the reader should have no trouble bounding these lengths as required 
in the next two sections. The lengths are relevant because of Lemma 2.1 
below. 

Throughout Sections 3 and 4, G will be 2-transitive on the set X of 
points of the design 9, where A = 1 and k > 2. Let x and y be as above, and 
let B be the block on x and y. Then G,, fixes B, and hence acts on 
B - (x, y >. Consequently, G,, must have a fairly short orbit on X- {x, y }, 
in view of the following standard, elementary facts. 

LEMMA 2.1. (i) There are r = (v - 1 )/(k - 1) blocks per point. 

(ii) Either v=k*-k+l or oak*. 

3. SIMPLE NORMAL SUBGROUP 

In this section we will begin the proof of Theorem 1, assuming that G 
has a simple normal subgroup N. We will run through the list of 
possibilities given in Section 2. In each case, except G = *G*(3)= PTL(2, 8), 
N is also 2-transitive on X and we may assume that G = N. 

Case G = A,,. This cannot occur since G is 3-transitive. 
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Case G = PSL(2, q), q > 5. Since all orbits of G, on X- {x, y} have 
size > (q - 1)/2, Lemma 2.1 yields a contradiction. 

Case G = PSL(d, q), d 2 3. Here G, has orbit-lengths q - 1 and 
u-(q+ 1) on X- (x, y]. By (2.1), JBl =q+ 1. Thus, Q= PG(d- 1, q). 

Case G= PSU(3, q), v=q3 + 1. Each orbit of G, on X- (x, y} has 
length q - 1 or at least (q2 - 1)/3. By Lemma 2.1, k = 2 + (q - 1). Then 9 is 
the usual design for G. 

Case G = Sz(q), v = q2 + 1. Each orbit of G,, on X- {x, y ) has length 
q- 1, so that L emma 2.1 yields a contradiction. 

Case G=‘G2(q). Here IG,,( =q3(q- 1)/r and q3=v- 1 =r(k- 1). It 
follows that k - 1 is a power of 3, and that G.rB has a normal 3-subgroup 
transitive on B - {x}. A Sylow 2-subgroup of Gi is elementary abelian of 
order 68. By Section 2, Gg >/ PSL(2, k - 1) or *G,(k - 1). 

There is a unique involution t in G,,, F= F(t) has size q + 1, and 
C(t)“= PSL(2, q). If B= F then (iii) holds: If B c F then F is a subdesign, 
and C(t)’ yields a contradiction. 

Assume that B d F. Every element in G, - (t) has fixed point set 
{x, Y}. Thus, G, is faithful on B. Also, IG,,I = q - 1. This rules out 
‘Gz(k - 1 ), and shows that k = q and G: = PGL(& q). But then Gi contains 
a dihedral group of order 8. This contradiction shows that (iii) is the only 
possibility in this case. 

Case G= Sp(2n, 2) and v =2”-l(2”+ l), na 3. Here G, acts on 
X- {x) as 0 * (2n, 2) does on its singular vectors. Then G, has orbit- 
lengths 2(2”-‘T 1)(2”-2+ 1) and 2*“-* on X- {x, y}, which is impossible 
by Lemma 2.1. 

Case G=A,,v=15. Since G, has orbit-lengths 1 and 12 on 
X- {x, y}, 9 = PG(3,2). 

Case G = PSL(2, 1 1 ), v = 11. Since G, has orbit-lengths 3 and 6 on 
X- {x, y}, this case cannot occur by Lemma 2.1. 

Case G=M,,, M,,, M22, M2,, or M24. Since G is 3-transitive, these 
cannot occur. 

Case G = HS, v = 176. Since G, has orbit-lengths 12, 72, and 90 on 
X-{x,y},k=2+12byLemma2.1. But thenr=(v-l)/(k-l)isnotan 
integer. 

Case G = .3, v = 276. Since G, has orbit-lengths 112, 162 on 
X- {x, y ), Lemma 2.1 again produces a contradiction. 
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4. REGULAR NORMAL SUBGROUP 

Next, assume that G has a regular normal subgroup N of order pd. As in 
Section 3, we can replace G by a 2-transitive subgroup if necessary. 

The only interesting part of the proof of Theorem 1 is the following case. 

PROPOSITION 4.1. If G < ATL( 1, v) then 9 is an affine space. 

We may identify X with GF(o). Let B be the block containing 0 and 1. It 
suffices to show that B is a subfield of X. 

Set G*=GnAGL(l, u). 

LEMMA 4.2. B is a subspace of X. 

Proof. Since Gg is 2-transitive, (Gg)’ is transitive. Also, (GB)’ < G*. If 
plk, it follows that B is a subspace. 

If p j k, then a regular normal subgroup of Gz is cyclic. Then k is a prime 
and G,B, = 1. Set F= F(G,,). Then GF is 2-transitive [ 16, (9.4)] and Br F. 
Since F is a subspace of X, it follows that F is a subdesign. By induction, 
F= X. Then G is sharply 2-transitive. Since GB has a dihedral subgroup of 
order 2k, this is impossible [ 17, p. 196; 5, (5.2.4)]. 

LEMMA 4.3. We may assume that G, is faithful on B. 

Proof. Assume that G(B) # 1. Then F = F( G( B)) is a subfield of X, and 
GF is 2-transitive [ 16, (9.4)]. If B = F we are finished. If B c F then, assum- 
ing inductively that Proposition 4.1 holds for smaller a, we see that B is a 
subfield of F and hence of X. 

LEMMA 4.4. If(G*),, is irreducible on B, then 9 is an affine space. 

Proof: Let K be the GF(p)-space of linear transformations spanned by 
(G*)os. Then K is a subfield of V, and K fixes B. By hypothesis, K= GF(k). 
Thus, B = K. 

LEMMA 4.5. Gs is isomorphic to a subgroup of ATL(1, k). 

Proof: G: is a 2-transitive group such that G& is metacyclic. Any such 
group of degree k lies in ATL( 1, k). 

Remarks. The preceding lemma does not assert that the AfL( 1, k) is 
embedded in ATL( 1, u) in the natural manner. The remainder of the proof 
of Proposition 4.1 is, in fact, concerned with proving just such an embed- 
ding. 

Conceivably, G,, = 1. When this happens, the following all hold [ 17, 
p. 190; 5, p. 2291: 
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LEMMA 4.6. (i) /f IZ(G,)l = q - 1 and IG : G*l = n then v = q”; 

(ii) Z(G,J < (G*),; 

(iii) Every prime divisor of n also divides q - 1; and 

(iv) Zfq = 3 (mod 4) then n $ 0 (mod 4). 

Proof of Proposition 4.1. Write k =p’. First assume that there is a 
primessuchthatslp’-1 buts[p’-lfor l<i<e.Thene(s--1,sothat 
s le. By Lemma 4.5, a Sylow s-subgroup S of Gor, lies in AGL( 1, k). Each 
nontrivial field automorphism of GF(k) acts nontrivially on S. Thus, if GB 
is not AGL( 1, k) then S< (GB)’ < G’ B G* and Lemma 4.4 applies. Con- 
sequently, assume that G, is AGL( 1, k). Then Goi = 1 and Lemma 4.6 can 
be used. If s 1 n then S< G* by Lemma 4.6(i). If s 1 n then s 1 q - 1 by 
Lemma 4.6(iii), and hence S ,< Z(G,) since Sylow s-subgroups of Go are 
cyclic. Consequently, S ,< (G*),, once again (by Lemma 4.6(ii)). 

Now we may assume that no prime s exists. By [ 181, either k = p2 and p 
is a Mersenne prime, or else k = Z6. 

Let k = p*. If Go1 # 1 then [Go11 = 2 by Lemma 4.5, and 4 ( I(G,,)‘(. Thus 
4 1 1 (GOB)* I, and Lemma 4.4 applies. Now assume that Goi = 1, and let q 
and n be as in Lemma 4.6(i). If q - 3 (mod 4) then p + 1 ( I(G*),,J by Lem- 
ma 4.6(iv), so that Lemma 4.4 applies . Suppose that q z 1 (mod 4). Since 
p = 3 (mod 4) it follows that p2- 1 ( q- 1. Then p* - 11 IZ(G,)l. In par- 
ticular, a Sylow 2-subgroup of G, has a center of order 3 2( p + l), and 
hence cannot be generalized quaternion and so must be cyclic. Since 
lGosl = p*- 1, a Sylow 2-subgroup of Gas must lie in Z(G,), and hence 
also in G* (by Lemma 4.6(ii)). Once again Lemma 4.4 applies. 

Finally, consider the case k= 2 6. Since O*(G) is still 2-transitive we 
may assume that G = 02(G). Then (Go1 I 13. If Go1 # 1 then I(G,,s)‘l > 63/3 
and Lemma 4.4 applies. Assume that Go1 = 1. Let s E { 3, 71, and let S 
be a subgroup of Gas of order s. If s In in Lemma 4.6(i) then S < G*. If 
s/n then s I q - 1 by Lemma 4.6(iii), and S< Z(G,) < (G*), by Lemma 
4.6(i,ii). Thus, I(G*)J >21, and Lemma 4.4 completes the proof of 
Proposition 4.1. 

We will now run through the remaining cases listed in Section 2. 

Remark. If G,kSL(n, q), Sp(n, q), or G,(q)‘, we may regard X as a 
GF(q)-space. 

Case G, p SL(n, q), v = q”. Here G,, has an orbit of length q” - q. By 
Lemma 2.1, Bc (x). If B= (x) then 9=AG(n, q). If Bc (x) then, since 
G$;{ is 2-transitive, (x) is a subdesign of 9. By Proposition 4.1, this sub- 
design is AG(d, s) with sd = q. Then the group of scalar transformations 
induced on X by GF(s) also acts on each subdesign (x) and hence on 9. 
Thus, 9 consists of all afline lines over GF(s). 
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Case Go r> Sp(n, q), n > 4, v = q”. This time all orbits of Gal on I/-- (x) 
have lengths &q(q”-*- l)/(q- l)>q’@. By Lemma 2.1, Bc (x), and we 
can proceed as above, 

Case G,r>G,(q), q even, u = q6. This time all orbits of Gox on X- (x) 
have lengths divisible by q(q + l), q3(q + l), or q5. (These are the lengths of 
the nontrivial orbits of G,,, on the l-spaces of X, see, e.g., [2, (3.1)].) By 
the above arguments, we may assume that ) B n (X- (x))j is a nonzero 
multiple of q(q + 1). Note that GoEl istransitiveonC={(y)jyEB}.There 
is an underlying symplectic structure on X (see, e.g., [2, Appendix]), and 
(x) is the only member of C perpendicular to all members of C. This con- 
tradiction proves that BE (x), and completes this case. 

Case Go = G*(2)‘, v = 2(j. Since the orbit lengths of Gox on X- (x ) are 
2(2+ l), 23(2+ l), 24, and 24, the preceding argument goes through 
without any changes. 

Case G,rA,, v = 24. Since Gor is transitive on X- {O, x}, this cannot 
occur. 

Case G,r A6, v = 24. This time G,, has orbit-lengths 6 and 8 on 
X- { 0, x}, and Lemma 2.1 yields a contradiction. 

Case v= p*, G,kSL(2,3) or SL(2,5), p= 5, 7, 11, 19, 23, 29, or 59. A 
check of the possible groups G shows that we may assume that G has a 
subgroup H of index <2 having only one class of involutions. Then H, 
contains at least two involutions; since their product is of order p, it 
follows that k > p. By Lemma 2.1, k = p, and then CY? is AG(2, p). 

Case v = 34 and Go has a normal extraspecial subgroup E of order 
25. Then E,=(t) with ItI =2 and IF(t)\ =9. We have 80=0--l= 
r(k-1), so that (r,k)=(20,5), (16,6), (40,3), or (10,9). 

If k = 5 then IF(t) n BI = 3 and tB induces a transposition. (We could not 
have tB = 1 as F(t) would be a subdesign of 9,) Then G; = Sg. However, G 
cannot have a subgroup AS (although it can have an SL(2,5)). Thus, G(B) 
contains - 1, which is ridiculous. 

Similarly, if k = 6 then Gz is 2-transitive of degree 6, so that Gg>, 
PSL(2, 5). This leads to the same contradiction as above. 

If k = 3 then BE F(t). Since GFl:{ is 2-transitive, it follows that B is a 
l-space. Then 9 = AG(4, 3). 

Finally, if k = 9 then 9 is an afline plane of order 9. By [S, pp. 214, 232, 
2361, it is the “exceptional neartied plane.” 

Case v = 34 and G,pSL(2,5). The possibilities for r and k are as in the 
preceding case. As above, k # 5,6, while 9 is AG(2,9) or the exceptional 
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nearfield plane if k = 9. If k = 3 let t E GOX have order 3. Then IF( t)l = 9 and 
Bc F(t), so that C@ = AG(4,3) as above. 

Case GO = X(2, 13), u = 36. Since GB contains two involutions, and 
their product has order 3, we have 1# GB n Nd GB. Thus, GB n N is tran- 
sitive on B, and B is a subspace. If k = 3 then 9 = AG(6,3). 

If k = 33 then IGoB/ = 13 .6. This uniquely determines GOB (up to con- 
jugacy) and B. The design 9 is then the afline plane in [S; 5, p. 236). 

Finally, if k = 32 then /GOB1 = 24 and [ 121 applies. 

This completes the proof of Theorem 1. 

5. t-DESIGNS 

The list in Section 2 and Theorem 1 easily imply the following: 

THEOREM 3. Let 9 be a t-design with k 2 t + 1 >, 4, and let G Q Aut 9 be 
t-transitive on points. Then either 

(a) 9 consists of the points and planes of AG(d, 2) for some d, and G 
is Ef x GL(d, 2) or 27; >a A7 (and d= 4); 

(b) The blocks of 9 are all the images of {CO } v GF(q) under 
PGL(2, q’), e 2 2, and G r> PSL(2,q’); or 

(c) 9 is an S(4, 5, 11) S(5, 6, 12), S(3, 6, 22), S(4, 7, 23), or 
S(5,8,24), and G r> M,. 

Proof: Since G is 3-transitive, the list in Section 2 yields the following 
possibilities: Z$ >a GL(d, 2), Z: >Q A,, PSL(2, v) < G < PTL(2, u), or G is a 
Mathieu group. Assume that t = 3. Then Theorem 1 applies to G, and the 
corresponding design gX , and it is straightforward to check that (a), (b), 
or (c) (with S(3,6,22)) holds. If t > 3 then G is 4-transitive and (c) holds. 

6. PROOF OF THEOREM 2 

Set G = Aut Z’, and let k be the common size of all lines of 9. Let x be a 
point of 2, and let 1 have the usual meaning for 2. 

First assume that k > 2. The points and lines form a design 9 to which 
Theorem 1 applies. The design for PSU(3,2) is just AG(2, 3); the design 
for PSU(3,4) satisfies the conditions of Theorem 2. Excluding these instan- 
ces, the examples in (iii)-(v) do not have basis-transitive groups, since 
1 G, ) < v - k in each case. Thus, the points and lines can be identified with 
the points and lines of a projective or affine geometry. We may assume that 
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rank(P) > 3, so that (by induction) each interval [x, 1 ] is a truncation of 
a projective or affine geometry. Comparison with 9 shows that the same is 
true of 9, as required. 

Now let k = 2, but assume that 9 is not the truncation of a Boolean lat- 
tice. Then Theorem 3 applies to a suitable truncation of 9. On the other 
hand, by induction [x, l] is either a truncation of a projective or afline 
geometry, or a Steiner system as in Theorem 2 (ii). It follows that 9 is also 
either a truncation of a projective or affine geometry or one of the 
aforementioned Steiner systems. 
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